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Directly probing the fluid flow and liquid-vapor interface shape in the microscopic immediate vicinity of the
moving contact line can only be accomplished in very specific and isolated cases. Yet this physics is critical to
macroscopic dynamic wetting. Here we examine the microscopic(or inner) physics of spreading silicone fluids
using data of macroscopic dynamic contact angle versus Capillary number Ca=Um /s. This dynamic contact
angle is precisely defined so that it can be related back to the microscopic behavior through detailed theory.
Our results indicate that the parameters describing the inner region have a detectable dependence on spreading
velocity when this velocity exceeds a critical value. This dependence is not scaled(i.e., the data are not
collapsed) by Ca, which suggests that an additional time scale must be present in the model of the inner region.
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I. INTRODUCTION

Wetting dynamics is intimately related to the motion of a
fluid in the highly confined region in the immediate vicinity
of the moving contact line. The laws that control the fluid
motion in that region(called the “inner region,” see below)
are different from those that govern the motion of the bulk
material farther from the contact line[1–3]. Since experi-
mentally probing the inner region directly has as yet been
impossible in almost all cases, efforts to determine the inner
scale physics use measurement of some larger-scale feature
(usually the dynamic contact angle) and then relate the mea-
surements back to the inner physics using theories.

The literature on dynamic contact angles displays a great
lack of uniformity on the definition and measurement of
this quantity, on how to translate the measurement from one
geometry to another[4], and on the correct method of ex-
tracting information on the inner scale physics using the
measured quantity. The chief difficulty is that geometry-
independent, material-only-dependent dynamic contact
angles cannot be measured directly; hence they must be in-
ferred by interpreting the measurement of some other physi-
cal quantity. Despite this problem, much useful information
on the hydrodynamics in the region neighboring, but not in-
cluding, the contact line has been extracted using somewhat
disparate(or inconsistent) physical measurements[5–7].

Near a contact line moving relative to a solid with speed
U, the flow of a Newtonian fluid of viscositym and surface

tensions obeying the no-slip condition at the solid exhibits a
nonintegrable stress singularity. This singularity prevents one
from satisfying a contact angle condition at the moving con-
tact line[1]. To remedy this failure of the model, it has been
assumed that, within a distanceLi of the contact line(called
the “inner” region), new mechanisms(e.g., liquid slip at the
solid [8–10] or a shear-thinning viscosity[11]) are present
that remove the singularity. One can then specify that the
angleu between the solid and the local tangent to the inter-
face satisfiesu=Qi at the contact line. Hydrodynamic analy-
ses[12–14] relate the macroscopic dynamic contact angleud
measurable in an outer or macroscopic length,Lout, to the
inner or actual contact angle,Qi, an inner length scale,Li,
and the capillary number Cas=Um /sd,

gsudd = gsQid + Ca lnsLout/Lid, s1d

wheregsxd;e0
xhsy−cosy sin yd /2 sin yjdy when the second

fluid is assumed to be a gas whose dynamics may be ignored
[42]. As we discuss below in Sec. II A,ud need not be the
interface slope at any particular location.

The physics of the inner region is of considerable intrinsic
interest. Further, to the extent that it has an impact on the
macroscopic contact angle[as illustrated by Eq.(1)] and
flow fields, it controls the macroscopic dynamic wetting seen
in nature and used in a wide variety of technologies. How-
ever, there have been no direct experimental measurements
of the nature of the mechanism that removes the singularity.
While very careful measurements of spreading over precurs-
ing films provide useful information about macroscopic
spreading, they do not address how the singularity is re-
moved at the actual contact line[15,16]. In fact, it is not even
guaranteed that the singularity should be removed by mecha-
nisms at the continuum scale; for example, the models by
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Blake and collaborators consider the hopping of molecules at
the contact line[3].

Elucidating the inner physics is challenging. Even the
much more limited goal of getting values ofQi and Li at
each velocity poses significant problems. In fact, Eq.(1)
shows that macroscopic measurements ofud can only yield
gsQid−Ca lnsLid, i.e., not the individual values ofQi andLi
at each spreading velocityU [4,17,18]. An approach taken in
the past to deal with this situation has been to ignore theU
dependence and assume thatQi and Li are constants. This
implies thatQi would equal the static contact angle,us. Then
Li may be deduced by fitting Eq.(1) to data ofud versus Ca
[13]. Of course this approach is arbitrary. The theory leading
to Eq. (1) does not requireQi or Li to be constants, nor is
there experimental evidence that they are constants. In fact,
our results indicate that either one or both ofQi andLi de-
pend onU, a situation wholly compatible with all of the
assumptions that lead to Eq.(1).

The only approach based on first principles to address
inner physics is molecular-dynamics(MD) simulations.
Since the late 1980s, these simulations have opened a win-
dow into the inner region by suggesting that the liquid adja-
cent to the solid may slip within a few molecular diameters
from the contact line[19,20]. Using MD simulations with
typical Lennard-Jones potentials, Hadjiconstantinou[21] re-
cently found a slip velocity that he fitted with an exponential
decay of about two molecular lengths from the contact line.
This investigation is unique in that it attempts to connect this
microscopic analysis to a continuum hydrodynamic analysis.
Based on the agreement with finite-element calculations that
incorporate the slip condition found in the MD simulation
and use the static value forQi, it is suggested thatQi is
almost equal to the static equilibrium angle,us. Similar con-
clusions are derived in MD simulations by De Conink and
collaborators, who extract an apparent dynamic contact angle
and interpret its value in terms of Blake’s molecular kinetic
model of the inner physics[22]. However, other MD simu-
lations by Jin, Koplik, and Banavar[23] suggest thatQi does
vary with spreading velocity. On the other hand, theoretical
investigations that probe the velocity dependence ofQi and
Li are scarce. Among these, we note the diffuse interface
model analysis of Chenet al. [24] that predicts a velocity-
dependentLi not scalable by Ca and Eggers and Stone’s[25]
new look at the lubrication equations that yields a cutoff
length for the logarithmic singularity proportional to Caa

when a meniscus advances over a film.
In the analysis ofusUd for certain experiments, the as-

sumptionQi =us applied to Eq.(1) has generated values for
Li that are below molecular dimensions. These unphysically
small values ofLi have led some[26] to suggest that a sig-
nificant extra source of dissipation must be present near the
contact line in addition to the viscous flow outside the inner
region. This conclusion need not be valid if the analysis of
the experimental data allowsQi andLi to be functions ofU.
If a suitable(not yet known) dependence forQisUd is used in
the analysis of the experimental data,Li may be brought to
physically reasonable ranges.

The objective of this study is to establish whether there is
dynamic variation inQi andLi as well as whether this varia-
tion is only of a hydrodynamic origin, i.e., whether theU

dependence can be described by the single parameter Ca.
This latter aspect is crucial because the lack of Ca scalability
would indicate that other time scales arising fromLi and a
new velocity scale(needed to nondimensionalize the non-Ca
dependence onU) are acting in the inner region. The possi-
bility of other time scales is not a new idea: they may arise
because molecular rearrangements are not instantaneous.
Shikhmurzaev has used this concept in his model where ma-
terial mapped from the liquid-gas to the solid-liquid interface
as the contact line moves does not attain its equilibrium
solid-liquid surface energy until a(relaxation) time trel after
the material has passed by the contact line region[27,28].

In Sec. II, we discuss the general requirements of hydro-
dynamic theories, showing a precise definition of the dy-
namic contact angle and that the inner parameters may de-
pend on velocity. In Sec. III, we discuss our experimental
methods, emphasizing the detailed and accurate fitting of
the data and thus the validity of extracting inner parameters
using Eq.(1). In Sec. IV, we discuss our results on a suite
of systems, showing that inner scale parameters carefully
extracted can give intriguing new insight into inner scale
dynamics.

II. ESSENCE OF THE MODELS

A. General remarks on the models

1. Approaches based on dissipation

A formulation which balances the rate of viscous dissipa-
tion with the rate of work done by the driving force of the
contact line is often used to connect the microscopic phe-
nomena near the contact line with a macroscopically defined
contact angle and its velocity dependence. If one neglects the
change of the liquid-vapor interface area due to interfacial
viscous deformation outside of the inner region, then the
driving force is proportional to cosud−cosus [29]. Using
the small-slope approximation and settingus=0 lead to the
power lawud,Ca1/3 in agreement with the small-Ca limit of
Eq. (1) whenQi =0 andLi is independent ofU. One may find
the dissipation away from the inner region(where the phys-
ics is known) from the flow calculated in a particular fluid
body. If one considers that dissipation in the inner region
must be accounted for, then one must include another term of
dissipation[30].

The dissipation-based approach is by nature an “integral”
balance. As such, it does not inform about the detailed de-
formation of the interface by viscous forces but it can in
principle yield the correct parametric dependence forud.
However, in cases where the inner dissipation is small com-
pared to that in the rest of the fluid body, caution must be
observed in using these methods. The dissipation away from
the contact line must be calculated extremely accurately or
errors in that calculation will lead directly to errors in the
estimation of the inner physics. Further, it would be ex-
tremely difficult to verify experimentally that the dissipation
away from the contact line is calculated correctly so that one
has experimental verification that the inner physics is in-
ferred accurately from a measurement ofud versus Ca.

2. Approach based on hydrodynamic analysis

In this study, we take a more detailed approach to probing
the inner scale physics. Our study is based on solutions of
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the flow fields and interface shapes near the moving contact
line using the systematic asymptotic method of Cox[12].
Besides relatingud to Qi, Li, and Ca, this theory also predicts
the functional form of the interface deformation by viscous
stresses near the contact line. This deformation largely deter-
mines the dynamic contact angleud, the effective boundary
condition for the interface shape far from the contact line.
This model of the functional form of the interface deforma-
tion has been shown to be accurate for a suite of relatively
viscous simple polymeric fluids[17,31]. In the present study,
we extract information about the inner physics only after
experimentally verifying that the asymptotic model describes
very accurately the viscous deformation of the interface near
the contact line. As we will show, this precaution is critical to
getting sufficiently well defined and precisely determined
contact angles that inner scale physics can be exposed. Sim-
pler methods for determiningud could lead to large errors in
revealing the inner physics.

Since our experimental results will depend on the use of
Eq. (1), we examine briefly the assumptions behind the
model that produces it. The key in the development of Eq.
(1) is that no assumption is made about the velocity depen-
dence of the inner parameters,Qi, Li. Thus, in general they
may depend either locally on spreading velocityU or possi-
bly even nonlocally on some other macroscopic characteris-
tic of the flow field[32]. The single physical assumption for
the inner region is that a suitable(but unspecified) mecha-
nism exists with characteristic lengthLi that removes the
singularity [12].

Neglecting gravity and inertia, the dimensionless groups
Ca ande;Li /Lout describe the flow in the vicinity of the
contact line. The limit Ca→0 holding Ca lne=−A sA.0d
fixed yields Eq.(1) as the main result. This limit process
establishes a specific order relation between Ca ande, which
implies thate→0 in a specific way, i.e.,e=exps−A/Cad as
Ca→0. An Os1d independent variable is defined asj
;Ca lnsr /Loutd. Consequently, forj fixed and Os1d, the
physical distance from the contact line,r, satisfiesr /Lout
!1 and r /Li @1. Thus, the region wherej=Os1d lies be-
tween the inner and the outer and is called “intermediate.”

The two chief features of the intermediate region are(i) the
flow and interface shape are independent of the system ge-
ometry, and(ii ) viscous and surface tension forces balance
even though Ca!1. The interface shape, specified by the
slope of the interface,u, in the intermediate and beginning of
the outer regions is given by[18]

u , g−1Xgsudd + Ca ln
r

Lout
C + f0sr/Lout;udd − ud

as r/Lout→ 0, s2d

where g−1 denotes the inverse function ofg, g−1(gsxd)=x,
and f0sr /Lout;udd represents the equation of a static meniscus
with contact angleud, i.e., ud= f0s0;udd, see Fig. 1.

The first term on the right-hand side of Eq.(2) accounts
for the viscous deformation of the interface in the interme-
diate region discussed above. It depends only on the inner
region since the asymptotic matching givesgsudd
+Ca lnsr /Loutd=gsQid+Ca lnsr /Lid. The second term of Eq.
(2) is the static contribution to the interface shape which
depends on the geometry of the system. The details of the
asymptotic matching technique are beyond the scope of this
work and we refer the interested reader to Cox[12] and
Dussan V.et al. [18]. Physically,ud is the angle between the
solid and the extrapolation of the outer, static interface back
to the solid, see Fig. 1. It is clear from its definition thatud is
not the interface slope at any particular location. In Eq.(2),
ud is the only unknown. It may be determined experimentally
by treating it as an adjustable parameter in a fit of Eq.(2) to
experimental data ofusrd at known Ca andLout. Unlike the
dissipation-based methods, by following this procedure we
have explicit experimental proof that the model which leads
to Eq. (1) correctly describes the fluid motion near the con-
tact line before we even apply Eq.(1) to explore the inner
physics.

Cox provides the simplest interpretation ofLi as the char-
acteristic length(not necessarily a slip length) where the sin-
gularity is resolved[12]. In this framework,Qi is the contact
angle boundary condition at the microscopic moving contact
line. In a slightly more complex interpretation,Li is the cut-
off of the logarithmic divergence of the interface slope as
r /Lout→0. In this case,Li need not be the characteristic
length of the mechanism that resolves the singularity but the
largest length scale where the usual assumptions cease to be
valid [25,33]. Here, it could be possible for a cascade of
physical mechanisms with successively smaller characteristic
lengthsLi1

.Li2
.Li3

. . . to act at the contact line. IfLi1
is the

length where the usual model first breaks down, thenQi is
the interface slope associated withLi1

[34]. Yet another in-
terpretation ofLi is given in Cox’s[35] posthumous paper on
inertial effects on liquid spreading. The inner region is as-
sumed to be resolved using a Navier slip model with slip
lengtha. Unlike the conventional case of a slip condition at
Re=0, where the inner length coincides witha, here a spe-
cial definition of the inner lengthLi =a2U /n (where n is
kinematic viscosity) is required in order to make the solution
in the inner boundary layer independent of Re.

FIG. 1. Schematic showing the intermediate region(horizontally
dashed) where viscous deformation is significant. Far from the con-
tact line, the interface is staticlike because Ca!1 and viscous
forces are negligible compared to surface tension. The extrapolation
of the staticlike region back to the solid makes an “apparent” con-
tact angleud with the solid.
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B. Using the model to analyze data

When we fit Eq.(2) to the measured interface shape, we
check that Eq.(2) correctly describes the interface shape in
the intermediate region, indicating that the flow has been
modeled correctly. Then we may apply Eq.(1) knowing that
we have connected to the inner region by using the correct
flow in the intermediate region. In contrast, measuringud
directly from the extrapolated quasistatic shapef0s0;udd far
from the contact line does provide the correct dynamic con-
tact angle; however, this method does not establish anything
about the physics of the flow near the contact line and, thus,
poses a danger when it is used to infer inner dynamics.

Though not readily apparent, measurements ofud versus
Ca contain information that allows one to probe some dy-
namics ofQi and Li. The value ofud is made up of two
dynamic contributions: first is the viscous deformation in the
intermediate region, contained in the term Ca lnsLout/Lid in
Eq. (1). We call this the “intermediate” contribution. The
other dynamic component ofud comes from the possible
dependencesQisUd and LisUd. These dependences, which
need not be scaled by Ca, constitute what we call the “inner”
contribution.

In most cases reported in the literature, by far the largest
of the two contributions is the intermediate one, wholly de-
scribed by Ca. However, this need not always be the case.
WhenA in the condition Ca lne=−A as Ca→0 is small, the
intermediate region where viscous bending is significant be-
comes vanishingly small. Then the interface shape looks
static until it meets the inner region andud=Qi. However, if
in an experiment the viscous bending cannot be detected, the
implications for the inner physics become ambiguous. Any
one of the following might be happening.(i) The viscous
bending is negligible but the inner contact angleQi Þus due
to inner region dynamics,QisUd. (ii ) The viscous bending is
negligible andQi <us. (iii ) The viscous bending is not neg-
ligible but takes place in a region that is smaller than the
spatial resolution of the experiment. Here the departure ofud
from us may be due to viscous bending, inner dynamics, or
both.

When the intermediate contribution toud is dominant, raw
measurements ofud are relatively insensitive to material-
dependent inner physics across material systems. This fact is
often embodied in the well-known Hoffman curve where
measurements ofud versus Ca on liquids with differentus
moving in a capillary tube show a remarkable collapse[5].
Consequently, in order to expose the inner residual dynamic
variation of ud, we must first subtract the dominant
Ca-controlled intermediate contribution. This is discussed in
the next section.

1. Exposing the inner region

Our goal is to learn about the dynamic dependence ofLi
andQi from measurements ofud versusU (or Ca). Since the
dependence ofLi andQi with U is unknown, we assume that
they may be expanded in a Taylor series valid for smallU as

Li = L0 + UL1 + ¯ , s3ad

Qi = us + Uu1 + ¯ . s3bd

L0 represents the limit ofLi at zero spreading velocity.
Clearly the use of a Taylor series may not include all cases
since there is no guarantee that the powers must be integers.
However, this assumption does not affect the value ofL0
which is one focus of our data analysis.

From Eqs.(1)–(3) it follows that in the small-U limit,

gsusd + Ca ln
Lout

L0
+ Uu1 g8susd + U2F1

2
u1

2 g9susd + u2 g8susd

−
m

s

L1

L0
G + U3FS1

2
L1

2 − L2 L0D m

sL0
2

+ u3 g8susd + u1u2 g9susd +
1

6
u1

3 g-susdG¯
=gsudd.

WhenusÞ0, even the O(1) term (made up of the first two
terms on the left-hand side) has two unknowns. So we will
only treat cases whereus=0, which reduces the above ex-
pression to

Ca ln
Lout

L0
− U2SmL1

sL0
D + U3FS1

2
L1

2 − L2L0D m

sL0
2 +

u1
3

9
G¯

= gsudd. s4d

To interpret data ofud versus Ca, Eq.(4) must be fitted to
those data. From the terms proportional toU andU2, we may
extractL0 andL1. In the next section, we explain the details
of this data analysis.

III. EXPERIMENTAL METHOD AND DATA ANALYSIS

In the experiments we immerse a vertical cylindrical
Pyrex tube of radiusRT=1.25 cm at constant velocity con-
centrically into a 10-cm-diam beaker filled with poly-
dimethylsiloxane(PDMS) and we examine the shape of the
meniscus that forms on the tube surface. We vary the chem-
istry of the tube surface and the molecular weight and end
termination of the PDMS. Our range of molecular weights
covers the entanglement limit(approximately atm=10 P for
PDMS) [36]. The Pyrex cleaning procedure, and optical and
data acquisition systems are the same as used in previous
studies[31]. The relative humidity is held below 6% in all
experiments.

We compare measurements of the local interface slope,u,
versus distance to the contact line,r, to the theory, expressed
in Eq. (2), that describes the dynamic interface shape near
the moving contact line asr /Lout→0 [18]. All parameters in
Eq. (2) are determined independently exceptud. We extract
ud for each material by fitting Eq.(2) to the measured inter-
face shape at each spreading velocityU with ud as an adjust-
able fitting parameter. Since in our experiments the tube ra-
dius RT is much larger than the capillary lengtha
f;ss /rgd1/2g, the appropriate outer lengthLout for a tube
immersed into a large liquid bath isa. A typical image ap-
pears in Fig. 2. A data set and fitting of Eq.(2) are shown in
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Fig. 3. Using very strict statistical criteria, we only accept fits
where x2 is statistically equivalent to 1 and there are no
systematic deviations of the data from the model(resolving
differences to less than 0.25°). We note that the variation of
ud over ther range we probe does little more than translate
the fitted curve along theu axis while the curvature is fixed
by Ca, which is independently determined. Thus, the success
of the fit is a stringent test of the ability of the model to
describe the viscous bending. The pixel noise in our camera
produces an uncertainty inud of about 0.1°. However, we see

larger variations among experiments performed under the
same conditions but on repetitive cleanings of the same sur-
face. These variations are reflected in the uncertainties on the
data we report.

The basis for our data analysis is Eq.(4). Obviously if Li
and Qi were constants, thenQi =us=0 and hu j =0,
Lj =0 for j ù1j, so that the quantity

G ; gsudd − Ca lnsa/L0d

, − U2SmL1

sL0
D + U3FS1

2
L1

2 − L2L0D m

sL0
2 +

u1
3

9
G s5d

would be zero. Thus, a departure from zero in the plot ofG
versusU (or Ca) indicates that at least one ofLi and Qi is
velocity-dependent. We adopt this departure ofG from 0 as a
criterion to probe this velocity-dependent inner scale phys-
ics. The quantityG is more sensitive to the inner physics
thangsudd because it has most of the intermediate(i.e., “uni-
versal”) dynamics stripped away.

Each series ofgsudd versus Ca is fitted to Eq.(1) using
Eq. (3). The order of the polynomial in Eq.(3) is increased
until the fit quality no longer improves as demonstrated by
the F-test[37]. We find that, for the systems examined, be-
tween first- and fifth- order polynomials are required to fit
the data. An example fit to a data set requiring fourth order is
shown in Fig. 4.L0 is extracted from the linear coefficient in
such fits. If data were to be taken at higher speeds where Re
cannot be neglected, it would be critical that the analysis be
based on a modification of Eq.(1) accounting for the non-
negligible effects of inertia on the fluid flows near the contact
line [12,38].

Conventional studies of dynamic wetting focus on some
version of a macroscopic dynamic contact angle and its
variation with Ca for one or more classes of materials. Thus,
graphs like that of Hoffman’s[5] are obtained where the
dynamic variation of the contact angle is mostly captured by
the viscous hydrodynamic action of the “intermediate” re-
gion of the flow. This hydrodynamic action is “universal” in
the sense that all its material dependence is accounted for by
Ca. Figure 5 showsud versus Ca for two PDMS of the same

FIG. 2. The shadow of a meniscus advancing at Ca<10−2.

FIG. 3. Ca<10−2. (a) Data (dots) and best fitsud<65°d of Eq.
(2) to the data.(b) Data minus best fit: difference is distributed
uniformly around zero.

FIG. 4. Fit ofgsudd vs Ca using a fourth-degree polynimial. The
system is 10 Poise, –OH-terminated PDMS spreading on silanated
Pyrex.
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viscosity(chain length) but different molecular end termina-
tions, −CH3 and −OH. Both the linear-log and the log-log
plots show similar characteristics. In particular, both materi-
als roughly follow a power law Ca1/3. The level of differen-
tiation in these results is similar to that seen in Hoffman’s
data.

When the universal contribution is stripped from the dy-
namic contact angle by forming the quantityG [cf. Eq. (5)],

the residual dynamics of the inner region is exposed. Figure
6 shows that, for the two materials of Fig. 5,G departs sta-
tistically from zero. Thus, either one or both of the inner
parameters,Li and Qi, depend onU. While these effects
become evident when the intermediate contributions toud
versus Ca are stripped away, the inner contribution remains
small. Thus, imprecise methods of defining the dynamic con-
tact angle and of measuring the contact angle could lead to
systematic errors in derived inner scale parameters as well as

FIG. 5. ud vs Ca for two 10-Poise PDMS of different end ter-
mination. +: −CH3; n: −OH. (a) linear-log; (b) log-log. Dashed
line in (b) has slope 1/3.

FIG. 6. G vs Ca for two 10-Poise PDMS fluids with different
end termination spreading on bare Pyrex.n: −CH3; s: −OH. Error
bars as marked or else smaller than marker size.

FIG. 7. G vs U (a) and G vs Ca (b) for the −OH terminated
series.n: 10 Poise.s: 40 Poise.m: 150 Poise.

FIG. 8. G vs Ca for the −CH3 terminated series.n: 10 cP.s:
100 cP.n: 10 Poise.L: 50 Poise.q: 120 Poise.P: 600 Poise.
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in developing a boundary condition for the macroscopic in-
terface[17].

IV. RESULTS AND DISCUSSION

In our materials studies, we change the liquid by using
PDMS with two chain terminations(−CH3 and −OH) and
varying molecular weight/viscosity. We also alter the solid
by surface modification(silanization). For all systems con-
sidered,us=0.

Besides the evidence that the inner parameters cannot be
constants, Fig. 6 shows that(i) the dependence of the inner
parameters onU is far from universal, and(ii ) this depen-
dence is not scaled by Ca. These results are shown for an
entire series of fluids in Figs. 7(a) and 7(b), where G is
plotted for the −OH series versusU and Ca. Using Ca in-
stead ofU does help contract the data cloud but is far from
unifying the data. Thus, the inner dynamics is not wholly

scalable by Ca even for such a simple material change as
viscosity/chain length at fixed end termination. This lack of
Ca scaling indicates that a new velocity scale must be
present in the inner scale physics which, together withU,
forms a dimensionless group that accounts for theU depen-
dence of the inner parameters. Figures 7(b) and 8 show
changes in inner region dynamics as a result of chain length
variation for fixed molecule end group termination. Our
−CH3-terminated series shows effects as large as the −OH
series, but we find that the contribution of the inner physics
to the dynamic contact angle may be either positive or nega-
tive. The large effect of end termination on the inner dynam-
ics of m=10 Poise PDMS is shown in Fig. 6, where two
different inner dynamics can be seen. Similar differences are
caused between the other pairs of closely matched viscosity
oils with different end terminations.

Figure 9 compares dynamic inner effects for −CH3- and
−OH-terminated 10 Poise PDMS on two different surfaces:
bare Pyrex and silanated Pyrex. By decreasing the polarity of
the surface(silanization), the difference between −OH and
−CH3 is made smaller than in the bare Pyrex case. In addi-
tion, the difference between bare and silanated Pyrex is dra-
matic for the polar OH-terminated fluid, but almost nonex-
istent for the nonpolar CH3-terminated fluid.

Having established that, according to the model of Eq.
(1), at least one of the inner parameters must depend onU,
we examine possible ramifications of the inner physics our

TABLE I. Methyl and hydroxyl terminated PDMS on Pyrex.

m
(cP)

Rg
a

(nm)
L0

(nm)
Uc

smm/secd
tc

(ms)

Chain
length

(monomer units)b

Methyl

10 1.3 3.6 .1000 ,0.0036 17

100 2.8 1.5 100–400 0.0037–0.015 78

1000 9.5 3.7 40 0.92 870

5000 11 6.7 6 1.1 1200

12000 13 14 2 6.5 1600

60000 15 82 ,1 .8.2 2000

Hydroxyl

1000 8.8 10 8 1.2 750

4000 11 300 2 150 1100

15000 13 270 1 270 1600

aSee Ref.[36].
bBased on weight-average molecular weight.

TABLE II. Effect of surface.

m (cP)-
end group Surface

L0

(nm)
Uc

smm/secd
tc

(ms)

1000-Methyl bare Pyrex 3.7 40 0.92

1000-Methyl silane 12 13 0.92

1000-OH bare Pyrex 10 8 1.2

1000-OH silane 4.7 3 1.6

FIG. 9. Effect of surface for 10 Poise, −OH-terminated PDMS
on n: bare Pyrex; +: silanated Pyrex; and for 10 Poise
−CH3-terminated PDMS ons: bare Pyrex;n: silanated Pyrex.
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measurements have revealed. In Tables I and II we list the
values ofL0 found for all the systems. We see thatL0 is on
the scale of the radius of gyration of the polymer. As shown
in plots such as Figs. 7(b) and 8, each system has a critical
speed,Uc, above which the inner parameters’ velocity depen-
dence becomes detectable. Below this critical velocity, the
inner scale isL0 and a residence time in the inner region is
then t;L0/U for U,Uc. Then the critical residence time,
tc=L0/Uc (i.e., the residence time above which the inner
parameters exhibit their zero-U values), may be interpreted
as an upper bound for a relaxation time of the inner physics,
trel. These values appear in Tables I and II.

Table I shows the following trends for systems on the
same surface, bare Pyrex.(i) At fixed termination and in-
creasing chain length,L0 increases,Uc decreases, andtc in-
creases.(ii ) For fixed chain length, moving from −OH(polar
end group polymer on a polar surface) to −CH3 (a nonpolar
end group polymer on a polar surface), L0 decreases,Uc
increases, andtc decreases. The decrease intc may reflect a
decrease in interaction of the −CH3-terminated chain with
the polar Pyrex surface compared to an −OH-terminated
molecule of similar length. When we change surfaces, we
see complex variations inL0, Uc, and tc as we change the
polarity of the surface and the polymer end termination(see
Table II).

When 0,U,Uc, the inner parameters have their zero-U
values, viz.,Li =L0 and Qi =0. This implies thattrel,tc,t
so that the molecule is completely relaxed as it exitsL0.
Comparingtc to a relaxation time in the bulk polymer, the
Rouse relaxation timetRouse[39–41], Fig. 10 shows a jump
in tc from below to above the entanglement limit. Further,tc
correlates withtRouseabove the entanglement limit with dif-
ferent correlations for each end group.

Above the critical speed, things are less well defined.
However, we can safely say that, sinceL1.0 for all our
fittings, thenLi =L0+UL1.L0 at U.Uc, i.e., Li increases
with U at small enoughU. This scenario would be consistent
with Shikhmurzaev’s ideas[27] where Li is the length re-
quired to relax an interphase layer of molecular thickness
having a fixed relaxation time,trel;Li /U. According to
Shikhmurzaev, the layer would exitLi completely relaxed to
enter the region where the usual hydrodynamic assumptions
hold. In this view,Li would also be an increasing function
of U.

V. SUMMARY

We note that the theory behind Eq.(1) does not requireQi
and Li to be constant, thus allowing these quantities to de-
pend onU. Using a phenomenological dependence forQi
and Li, we formulated a method for analyzing data ofud
versus Ca that allows us to detect when this dependence
demands that either or bothQi andLi be functions ofU.

Analysis of our experimental data shows that, for our
material systems, at least one ofQi and Li must depend on
U. This dependence becomes detectable above a certain criti-
cal spreading velocity,Uc. In addition, the data show that a
precise definition and determination ofud is essential for
getting the correct inner dynamics. We do this by verifying
that the model which includes Eq.(1) precisely describes the
viscous deformation on the interface near the contact line[cf.
Eq. (2)].

Far from contradicting the model, allowingQi and Li to
depend onU endows the model with a richer set of dynamics
affectingud. SinceQi andLi depend onU through a param-
eter other than Ca, this demands a new time scale(or veloc-
ity scale) in the model of the inner region, possibly related to
a relaxation time of the fluid. This finding is consistent with
theories such as Shikhmurzaev’s, where the actual dynamic
contact angleQi is a complex function of the flow via its
dependence on the interfacial energies of all interphase re-
gions meeting at the contact line, and the inner lengthLi is an
increasing function ofU. Attempts at extracting such a time
scale from our data show systematic trends across materials
and molecular weights.
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